Installation Instructions

Pellet Boiler P4 Pellet 8 - 105

Translation of the original German installation instructions for technicians
Read and follow the instructions and safety information!
Technical changes, typographical errors and omissions reserved!
M0931114_en | Edition 05/05/2014
Table of Contents

1 General 4
 1.1 About this manual 4

2 Safety 5
 2.1 Hazard levels of warnings 5
 2.2 Qualification of assembly staff 6
 2.3 Protective equipment for assembly staff 6
 2.4 Design Information 7
 2.4.1 Notes on standards 7
 General standards for heating systems 7
 Standards for structural and safety devices 7
 Standards for heating water 7
 Standards for permitted fuels 8
 2.4.2 Installation and approval of the heating system 8
 2.4.3 General information for installation room (boiler room) 8
 2.4.4 Requirements for central heating water 9
 2.4.5 Notes for using pressure maintenance systems 9
 2.4.6 Use with storage tank 10
 2.4.7 Chimney connection/chimney system 10
 Draught limiter 10
 Boiler data for planning the flue gas system 11
 2.4.8 Room air-independent operation 12
 2.4.9 Boiler ventilation 13

3 Technology 14
 3.1 Dimensions P4 Pellet 8-38 14
 3.2 Dimensions P4 Pellet 45-105 15
 3.3 Supply air connections for room air-independent operation 16
 3.4 Flue gas pipe position 16
 3.5 Components and connections 17
 3.5.1 P4 Pellet 8-38 17
 3.5.2 P4 Pellet 45-105 18
 3.6 Technical specifications 19
 3.6.1 P4 Pellet 8 – 25 19
 3.6.2 P4 Pellet 32 – 60 20
 3.6.3 P4 Pellet 70 – 105 21
 3.6.4 Airborne sound level 23

4 Assembly 24
 4.1 Materials supplied 24
 4.1.1 Tools required 24
 4.2 Positioning 24
 4.3 Temporary storage 25
 4.4 Setting up in the boiler room 26
 4.4.1 Remove boiler from pallet 26
 4.4.2 Moving the boiler in the boiler room 27
 4.4.3 Minimum distances in the boiler room 28
4.5 Dismantling for location where positioning is difficult
4.5.1 Removing the stoker assembly and insulation
4.5.2 Removing the door and ash drawer (P4 Pellet 8 - 25)
4.5.3 Dismantling the suction cyclone cover
4.5.4 Dismantling the stoker unit
4.5.5 Positioning dimensions after dismantling
4.5.6 Notes for reassembly
4.6 Assembling the pellet boiler
4.6.1 Before Installation
 Checking the seal of the ash doors
 Adjusting the doors
4.6.2 Fitting the induced draught fan
4.6.3 Fitting the ash container and doors (P4 Pellet 32 - 105)
4.7 Connecting the discharge system
4.8 Power connection
4.8.1 Information on circulating pumps
4.8.2 Comfort pellet box port
5 Start-up
5.1 Before commissioning / configuring the boiler
5.1.1 Setting the "Max level and Min level" sensor
5.2 Initial startup
5.2.1 Permitted fuels
 Wood pellets
5.2.2 Non-permitted fuels
5.2.3 Heating up for the first time
6 Decommissioning
6.1 Mothballing
6.2 Disassembly
6.3 Disposal
7 Appendix
7.1 Addresses
7.1.1 Address of manufacturer
7.1.2 Address of the installer
1 General

Thank you for choosing a quality product from Froling. The product features a state-of-the-art design and conforms to all currently applicable standards and testing guidelines.

Please read and observe the documentation provided and always keep it close to the system for reference. Observing the requirements and safety information in the documentation makes a significant contribution to safe, appropriate, environmentally friendly and economical operation of the system.

The constant further development of our products means that there may be minor differences from the pictures and content. If you discover any errors, please let us know: doku@froeling.com.

Subject to technical change.

Issuing a delivery certificate

The EC Declaration of Conformity is only valid in conjunction with a delivery certificate, which has been filled in correctly and signed as part of the commissioning process. The original document remains at the installation site. Commissioning installers or heating engineers are requested to return a copy of the delivery certificate together with the guarantee card to Froling. On commissioning by FROLING Customer Service the validity of the delivery certificate will be noted on the customer service record.

1.1 About this manual

This manual contains information about the following sizes of the pellet boiler P4:

- P4 Pellet 8, P4 Pellet 15, P4 Pellet 20, P4 Pellet 25, P4 Pellet 32, P4 Pellet 38,
- P4 Pellet 45\(^1\), P4 Pellet 48, P4 Pellet 60, P4 Pellet 70\(^2\), P4 Pellet 80,
- P4 Pellet 100 (99kW)\(^3\), P4 Pellet 100, P4 Pellet 105\(^4\)

1) P4 Pellet 45 is only available in the UK; 2) P4 Pellet 70 is only available in France;
3) P4 Pellet 100 with nominal heat output of 99kW is only available in the UK; 4) P4 Pellet 105 is only available in Germany.
2 Safety

2.1 Hazard levels of warnings

This documentation uses warnings with the following hazard levels to indicate direct hazards and important safety instructions:

DANGER

The dangerous situation is imminent and if measures are not observed it will lead to serious injury or death. You must follow the instructions!

WARNING

The dangerous situation may occur and if measures are not observed it will lead to serious injury or death. Work with extreme care.

CAUTION

The dangerous situation may occur and if measures are not observed it will lead to minor injuries or damage to property.
2.2 Qualification of assembly staff

⚠️ CAUTION

Assembly and installation by untrained personnel:

Risk of personal injury and damage to property.

During assembly and installation:

- Observe the instructions and information in the manuals
- Only allow trained staff to carry out assembly and installation

Assembly, installation, initial startup and servicing must always be carried out by qualified personnel:

- Heating technician / building technician
- Electrical installation technician
- Froling customer services

The assembly staff must have read and understood the instructions in the documentation.

2.3 Protective equipment for assembly staff

You must ensure that staff have the protective equipment specified by accident prevention regulations.

- For transportation, setup and assembly:
 - suitable workwear
 - protective gloves
 - sturdy shoes
2.4 Design Information

2.4.1 Notes on standards

The system must be installed and commissioned in accordance with the local fire and building regulations. The following standards and regulations should always be observed:

General standards for heating systems

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 303-5</td>
<td>Boilers for solid fuels, manually and automatically fed combustion systems, nominal heat output up to 500 kW</td>
</tr>
<tr>
<td>EN 12828</td>
<td>Heating systems in buildings - design of water-based heating systems</td>
</tr>
<tr>
<td>EN 13384-1</td>
<td>Chimneys - Thermal and fluid dynamic calculation methods Part 1: Chimneys serving one appliance</td>
</tr>
<tr>
<td>ÖNORM M 7510-1</td>
<td>Guidelines for checking central heating systems Part 1: General requirements and one-off inspections</td>
</tr>
<tr>
<td>ÖNORM M 7510-4</td>
<td>Guidelines for checking central heating systems Part 4: Simple check for heating plants for solid fuels</td>
</tr>
</tbody>
</table>

Standards for structural and safety devices

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖNORM H 5170</td>
<td>Heating installation - Requirements for construction and safety engineering, as well as fire prevention and environmental protection</td>
</tr>
<tr>
<td>ÖNORM M 7137</td>
<td>Compressed untreated wood – Requirements for storing pellets at the end customer’s site</td>
</tr>
<tr>
<td>TRVB H 118</td>
<td>Technical directives for fire protection/prevention (Austria)</td>
</tr>
</tbody>
</table>

Standards for heating water

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖNORM H 5195-1</td>
<td>Prevention of damage by corrosion and scale formation in closed warm water heating systems at operating temperatures up to 100 °C (Austria)</td>
</tr>
<tr>
<td>VDI 2035</td>
<td>Prevention of damage in water heating systems (Germany)</td>
</tr>
<tr>
<td>SWKI 97-1</td>
<td>Water quality for heating, steam, cooling and air conditioning systems (Switzerland)</td>
</tr>
<tr>
<td>D.P.R. n° 412</td>
<td>Regulations for the planning, installation, running/operation and maintenance of heating systems in buildings to reduce energy consumption with reference to Article 4, Comma 4 of the Legislative Decree of 9 January 1991, No. 10 (Italy)</td>
</tr>
</tbody>
</table>
Standards for permitted fuels

<table>
<thead>
<tr>
<th>EN 14961-2</th>
<th>Solid biofuel, fuel specifications and classes. Part 2: Wood pellets for non-industrial use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BImSchV</td>
<td>First Ordinance of the German Federal Government for implementation of the Federal Emission Protection Law, BGBl. I P. 491, in the applicable version.</td>
</tr>
</tbody>
</table>

2.4.2 Installation and approval of the heating system

The boiler should be operated in a closed heating system. The following standards govern the installation:

Note on standards ÖNORM / DIN EN 12828 Heating Systems in Buildings

NOTICE! Each heating system must be officially approved.

The appropriate supervisory authority (inspection agency) must always be informed when installing or modifying a heating system, and authorisation must be obtained from the building authorities:

- **Austria**: Inform the civic/municipal building authorities.
- **Germany**: Notify an approved chimney sweep and the building authorities.

2.4.3 General information for installation room (boiler room)

Boiler room characteristics

- There must not be a potentially explosive atmosphere in the boiler room as the boiler is not suitable for use in potentially explosive environments.
- The boiler room must be frost-free.
- The boiler does not provide any light, so the customer must provide sufficient lighting in the boiler room in accordance with national workplace design regulations.
- When using the boiler over 2000 metres above sea level you should consult the manufacturer.
- Danger of fire due to flammable materials.
 - No flammable materials should be stored near the boiler. Flammable objects (e.g. clothing) must not be put on the boiler to dry.
- Damage due to impurities in combustion air.
 - Do not use any solvents or cleaning agents containing chlorine in the room where the boiler is installed.
- Keep the air suction opening of the boiler free from dust.

Ventilation of the boiler room

Ventilation air for the boiler room should be taken from and expelled directly outside, and the openings and air ducts should be designed to prevent weather conditions (foliage, snowdrifts, etc.) from obstructing the air flow.
Unless otherwise specified in the applicable building regulations for the boiler room, the following standards apply to the design and dimensions of the air ducts:

Note on standards
- ÖNORM H 5170 - Construction and fire protection requirements
- TRVB H118 - Technical directives on fire protection/prevention

2.4.4 Requirements for central heating water

The following standards and guidelines apply:

Note on standards
- Austria: ÖNORM H 5195-1
- Germany: VDI 2035
- Switzerland: SWKI 97-1
- Italy: D.P.R. no. 412

NOTICE! Note on filling with make-up water: always bleed the filling hose before connecting, in order to prevent air from entering the system.

Observe the standards and also follow the recommendations below:

- Max. cumulative value for alkaline earth: 1.0 mmol/l or 100 mg/l (corresponds to 5.6 dH)
- Use softened water as the make-up water
- Avoid leaks and use a closed heating system to maintain water quality during operation

2.4.5 Notes for using pressure maintenance systems

Pressure maintenance systems in hot-water heating systems keep the required pressure within predefined limits and balance out volume variations caused by changes in the hot-water temperature. Two main systems are used:

Compressor-controlled pressure maintenance

In compressor-controlled pressure maintenance units, a variable air cushion in the expansion tank is responsible for volume compensation and pressure maintenance. If the pressure is too low, the compressor pumps air into the tank. If the pressure is too high, air is released by means of a solenoid valve. The systems are built solely with closed-diaphragm expansion tanks to prevent the damaging introduction of oxygen into the heating water.

Pump-controlled pressure maintenance

A pump-controlled pressure maintenance unit essentially consists of a pressure-maintenance pump, relief valve and an unpressurised receiving tank. The valve releases hot water into the receiving tank if the pressure is too high. If the pressure drops below a preset value, the pump draws water from the receiving tank and feeds it back into the heating system. Pump-controlled pressure maintenance systems with **open expansion tanks** (e.g. without a diaphragm) introduce ambient oxygen via the surface of the water, exposing the connected system components to the risk of corrosion. These systems offer no oxygen removal for the purposes of corrosion control as required by VDI 2035 and **in the interests of corrosion protection should not be used**.
2.4.6 Use with storage tank

NOTICE

In principle it is not necessary to use a storage tank for the system to run smoothly. However, we recommend that you use the system with a storage tank, as this ensures a continuous supply of fuel in the ideal output range of the boiler.

For the correct dimensions of the storage tank and the line insulation (in accordance with ÖNORM M 7510 or guideline UZ37) please consult your installer or Froling.

⇨ See "Addresses" [page 50]

2.4.7 Chimney connection/chimney system

EN 303-5 specifies that the entire flue gas system must be designed to prevent, wherever possible, damage caused by seepage, insufficient feed pressure and condensation. Please note in this respect that flue gas temperatures lower than 160K above room temperature can occur in the permitted operating range of the boiler.

The flue gas temperatures (for clean systems) and additional flue gas values can be found in the table below.

The connection between the boiler and the chimney system should be as short as possible. The upward angle of the connection should not exceed 30° - 45°. Insulate the connection. The entire flue gas system - chimney and connection - should be calculated in accordance with EN 13384-1.

Local regulations and other statutory regulations also apply.

NOTICE! The chimney must be authorised by a smoke trap sweeper or chimney sweep.

NOTICE! TRVB H 118 (Austria only) stipulates that an explosion flap must be installed in the connecting piece (flue pipe) directly next to the boiler. It should be situated in such a way that it poses no risk to persons!

Draught limiter

The installation of a draught limiter is recommended.

NOTICE! Install the draught limiter directly under the mouth of the flue line, as the pressure is constantly low at this point.
Boiler data for planning the flue gas system

<table>
<thead>
<tr>
<th>Description</th>
<th>P4 Pellet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Flue gas temperature at nominal load °C</td>
<td>140</td>
</tr>
<tr>
<td>Flue gas mass flow at nominal load kg/s</td>
<td>0,007</td>
</tr>
<tr>
<td>Flue gas mass flow at partial load kg/s</td>
<td>0,003</td>
</tr>
<tr>
<td>Required feed pressure at nominal load mbar</td>
<td>0,08</td>
</tr>
<tr>
<td>Required feed pressure at partial load mbar</td>
<td>0,06</td>
</tr>
<tr>
<td>Maximum permissible feed pressure</td>
<td>as per ÖNORM / DIN EN 303-5</td>
</tr>
<tr>
<td>Flue spigot diameter mm</td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>P4 Pellet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Flue gas temperature at nominal load °C</td>
<td>160</td>
</tr>
<tr>
<td>Flue gas mass flow at nominal load kg/s</td>
<td>0,022</td>
</tr>
<tr>
<td>Flue gas mass flow at partial load kg/s</td>
<td>0,009</td>
</tr>
<tr>
<td>Required feed pressure at nominal load mbar</td>
<td>0,08</td>
</tr>
<tr>
<td>Required feed pressure at partial load mbar</td>
<td>0,06</td>
</tr>
<tr>
<td>Maximum permissible feed pressure</td>
<td>gem. ÖNORM / DIN EN 303-5</td>
</tr>
<tr>
<td>Flue spigot diameter mm</td>
<td>150</td>
</tr>
</tbody>
</table>

1. P4 Pellet 45 is only available in UK

<table>
<thead>
<tr>
<th>Description</th>
<th>P4 Pellet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Flue gas temperature at nominal load °C</td>
<td>170</td>
</tr>
<tr>
<td>Flue gas mass flow at nominal load kg/s</td>
<td>0,043</td>
</tr>
<tr>
<td>Flue gas mass flow at partial load kg/s</td>
<td>0,019</td>
</tr>
<tr>
<td>Required feed pressure at nominal load mbar</td>
<td>0,08</td>
</tr>
<tr>
<td>Required feed pressure at partial load mbar</td>
<td>0,06</td>
</tr>
<tr>
<td>Maximum permissible feed pressure</td>
<td>gem. ÖNORM / DIN EN 303-5</td>
</tr>
<tr>
<td>Flue spigot diameter mm</td>
<td>150</td>
</tr>
</tbody>
</table>

1. P4 Pellet 70 is only available in France
2. P4 Pellet 105 is only available in Germany
2.4.8 Room air-independent operation

The P4 Pellet has a central air connection on the back of the boiler. If appropriate supply air and flue gas connections are installed, the boiler can be operated independently of room air as a type C\textsubscript{42} or type C\textsubscript{82} in the sense of EN 15035.

Definition of type C\textsubscript{4} as per EN 15035

A boiler that is connected via its combustion air supply and flue gas outlet, with a connecting piece that may be supplied, to a shared chimney with a shaft for combustion air supply and a shaft for flue gas outlet. The mouths of the air and flue gas chimney are either concentric or so close to each other that similar wind conditions apply.

NOTICE! Air is supplied by an air and flue gas system!

Definition of type C\textsubscript{8} as per EN 15035

A boiler that is connected via its combustion air supply and flue gas outlet, with a connecting piece, to a wind protection device and a single or shared chimney.

NOTICE! Air supply via an air supply line that is independent from the chimney system!

NOTICE! This design requires a wind protection device. If a protective grating is fitted, you must ensure that the mesh size is sufficiently large to prevent a significant loss of pressure and/or seal from dirt!

The second index "2" (C\textsubscript{42} / C\textsubscript{82}) indicates type C boilers with a blower fan downstream of the combustion chamber or the heat exchanger.

When dimensioning pipe bends in the supply air line you should note that:

- The ratio of the radius of curvature (r) to pipe diameter (d) should be greater than 1
 \[r:d \geq 1 \]

For example:
- Diameter of supply air connection = 80 mm
- Minimum radius of pipe bends 80 mm

Install the supply air line in as straight a line as possible and over the shortest path. Keep the number of pipe bends to a minimum (ideally a maximum of 4 bends)!

In addition, the following applies: The maximum resistance of the supply air line is 20 Pa!

You can find the necessary dimensions of the supply air connections in the boiler in the technical data sheets.

Minimum specification of connection lines

Connecting piece for the combustion air supply as per EN 1856-2

EN 1856-2 - T080 - N2 - D

Connecting piece for the flue gas outlet as per EN 1856-2

EN 1856-2 - T200 - P1 - W
2.4.9 Boiler ventilation

- Fit the automatic ventilating valve at the highest point on the boiler or at the ventilation connection (if present).
 - This ensures that air in the boiler is constantly expelled, thus preventing malfunctions caused by air in the boiler
- Check that the boiler ventilation is working properly
 - After installation and periodically according to manufacturer’s instructions

Tip:
- Fit a vertical pipe as a calming section in front of the automatic ventilating valve in such a way that the ventilating valve is positioned above the water level in the boiler

Recommendation:
- Fit a microbubble separator in the pipes to the boiler
 - Follow the manufacturer’s instructions!
3 Technology

NOTICE! Some sizes of the boiler P4 Pellet are not available in every country

3.1 Dimensions P4 Pellet 8-38

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
<th>8 - 15</th>
<th>20 - 25</th>
<th>32 - 38</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Length, boiler</td>
<td>mm</td>
<td>740</td>
<td>740</td>
<td>-</td>
</tr>
<tr>
<td>L*</td>
<td>Length, boiler</td>
<td>mm</td>
<td>-</td>
<td>-</td>
<td>820</td>
</tr>
<tr>
<td>L1</td>
<td>Total length incl. induced draught fan</td>
<td>mm</td>
<td>940</td>
<td>940</td>
<td>820</td>
</tr>
<tr>
<td>L1*</td>
<td>Total length incl. induced draught fan</td>
<td>mm</td>
<td>-</td>
<td>-</td>
<td>1020</td>
</tr>
<tr>
<td>B</td>
<td>Width, boiler</td>
<td>mm</td>
<td>600</td>
<td>770</td>
<td>860</td>
</tr>
<tr>
<td>B*</td>
<td>Width, boiler, incl. support for positioning unit</td>
<td>mm</td>
<td>705</td>
<td>875</td>
<td>965</td>
</tr>
<tr>
<td>B1</td>
<td>Total width including suction cyclone</td>
<td>mm</td>
<td>1185</td>
<td>1355</td>
<td>1445</td>
</tr>
<tr>
<td>H</td>
<td>Height, boiler</td>
<td>mm</td>
<td>1280</td>
<td>1280</td>
<td>1430</td>
</tr>
<tr>
<td>H1</td>
<td>Total height incl. suction cyclone</td>
<td>mm</td>
<td>1660</td>
<td>1660</td>
<td>1900</td>
</tr>
<tr>
<td>H2</td>
<td>Height, flue gas pipe connection</td>
<td>mm</td>
<td>1350</td>
<td>1350</td>
<td>1530</td>
</tr>
<tr>
<td>H3</td>
<td>Height, drainage connection</td>
<td>mm</td>
<td>460</td>
<td>460</td>
<td>460</td>
</tr>
<tr>
<td>H4</td>
<td>Height, flow connection</td>
<td>mm</td>
<td>460</td>
<td>460</td>
<td>460</td>
</tr>
<tr>
<td>H5</td>
<td>Height, return connection</td>
<td>mm</td>
<td>940</td>
<td>955</td>
<td>1085</td>
</tr>
<tr>
<td>H6</td>
<td>Height, ventilation connection</td>
<td>mm</td>
<td>1030</td>
<td>1030</td>
<td>1155</td>
</tr>
<tr>
<td>H7</td>
<td>Height, induced draught fan connection</td>
<td>mm</td>
<td>1090</td>
<td>1090</td>
<td>1215</td>
</tr>
<tr>
<td>H8</td>
<td>Height, suction system connection</td>
<td>mm</td>
<td>1480</td>
<td>1480</td>
<td>1720</td>
</tr>
</tbody>
</table>

1. Corresponds to the minimum positioning width after removing the stoker assembly, suction cyclone and positioning unit
2. Corresponds to the minimum positioning height after removing the stoker assembly, suction cyclone and positioning unit
NOTICE

Attention: Observe revised flow and return connection from P4 45 up to P4 105!

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
<th>45 - 60</th>
<th>70 - 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Length, boiler</td>
<td>mm</td>
<td>900</td>
<td>1000</td>
</tr>
<tr>
<td>L1</td>
<td>Total length incl. induced draught fan</td>
<td>mm</td>
<td>1100</td>
<td>1070</td>
</tr>
<tr>
<td>B</td>
<td>Width, boiler</td>
<td>mm</td>
<td>1030</td>
<td>1235</td>
</tr>
<tr>
<td>B*</td>
<td>Width, boiler, incl. support for positioning unit</td>
<td>mm</td>
<td>1275</td>
<td>1480</td>
</tr>
<tr>
<td>B1</td>
<td>Total width including suction cyclone</td>
<td>mm</td>
<td>1790</td>
<td>2085</td>
</tr>
<tr>
<td>H</td>
<td>Height, boiler 2)</td>
<td>mm</td>
<td>1585</td>
<td>1710</td>
</tr>
<tr>
<td>H1</td>
<td>Total height incl. suction cyclone</td>
<td>mm</td>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>H2</td>
<td>Height, flue gas pipe connection</td>
<td>mm</td>
<td>1685</td>
<td>1785</td>
</tr>
<tr>
<td>H3</td>
<td>Height, drainage connection</td>
<td>mm</td>
<td>490</td>
<td>500</td>
</tr>
<tr>
<td>H4</td>
<td>Height, return connection</td>
<td>mm</td>
<td>515</td>
<td>520</td>
</tr>
<tr>
<td>H5</td>
<td>Height, flow connection</td>
<td>mm</td>
<td>1290</td>
<td>1410</td>
</tr>
<tr>
<td>H6</td>
<td>Height, ventilation connection</td>
<td>mm</td>
<td>1310</td>
<td>1430</td>
</tr>
<tr>
<td>H7</td>
<td>Height, induced draught fan connection</td>
<td>mm</td>
<td>1375</td>
<td>1495</td>
</tr>
<tr>
<td>H8</td>
<td>Height, suction system connection</td>
<td>mm</td>
<td>1720</td>
<td>1720</td>
</tr>
</tbody>
</table>

1. Corresponds to the minimum positioning width after removing the stoker assembly, suction cyclone and positioning unit
2. Corresponds to the minimum positioning height after removing the stoker assembly, suction cyclone and positioning unit
3.3 Supply air connections for room air-independent operation

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>8 - 15</th>
<th>20 - 25</th>
<th>32 - 38</th>
<th>45 - 60</th>
<th>70 - 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply air connection pipe</td>
<td>mm</td>
<td>80</td>
<td>100</td>
<td>125</td>
<td>160</td>
<td>200</td>
</tr>
</tbody>
</table>

3.4 Flue gas pipe position

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>8 - 15</th>
<th>20 - 25</th>
<th>32 - 38</th>
<th>45 - 60</th>
<th>70 - 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Lateral distance</td>
<td>mm</td>
<td>420</td>
<td>585</td>
<td>650</td>
<td>815</td>
<td>1000</td>
</tr>
<tr>
<td>B – Depth distance</td>
<td>mm</td>
<td>90</td>
<td>90</td>
<td>85</td>
<td>90</td>
<td>80</td>
</tr>
</tbody>
</table>
3.5 Components and connections

3.5.1 P4 Pellet 8–38

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
<th>8 - 15</th>
<th>20 - 25</th>
<th>32 - 38</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boiler flow connection</td>
<td>inches</td>
<td>1</td>
<td>6/4</td>
<td>6/4</td>
</tr>
<tr>
<td>2</td>
<td>Boiler return connection</td>
<td>inches</td>
<td>1</td>
<td>6/4</td>
<td>6/4</td>
</tr>
<tr>
<td>3</td>
<td>Drainage connection</td>
<td>inches</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>4</td>
<td>Air vent connection</td>
<td>inches</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>5</td>
<td>Pellet suction line</td>
<td>mm</td>
<td>DA 60</td>
<td>DA 60</td>
<td>DA 60</td>
</tr>
<tr>
<td>6</td>
<td>Pellet return air line</td>
<td>mm</td>
<td>DA 60</td>
<td>DA 60</td>
<td>DA 60</td>
</tr>
<tr>
<td>7</td>
<td>Flue gas pipe connection (DM)</td>
<td>mm</td>
<td>130</td>
<td>130</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>Induced draught fan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Controller box</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lambdatronic P 3200 control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>High-limit thermostat (STL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Main switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Service interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5.2 P4 Pellet 45-105

NOTICE

Attention: Observe revised flow and return connection from P4 45 up to P4 105!

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
<th>45 - 60</th>
<th>70 - 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boiler flow connection</td>
<td>inches</td>
<td>6/4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Boiler return connection</td>
<td>inches</td>
<td>6/4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Drainage connection</td>
<td>inches</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Air vent connection</td>
<td>inches</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Pellet suction line</td>
<td>mm</td>
<td>DA 60</td>
<td>DA 60</td>
</tr>
<tr>
<td>6</td>
<td>Pellet return air line</td>
<td>mm</td>
<td>DA 60</td>
<td>DA 60</td>
</tr>
<tr>
<td>7</td>
<td>Flue gas pipe connection (DM)</td>
<td>mm</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>Induced draught fan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Controller box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lambdatronic P 3200 control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>High-limit thermostat (STL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Main switch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Service interface</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6 Technical specifications

3.6.1 P4 Pellet 8 – 25

<table>
<thead>
<tr>
<th>Description</th>
<th>P4 Pellet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Nominal heat output kW</td>
<td>10,5</td>
</tr>
<tr>
<td>Heat output range</td>
<td>3,2-10,5</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>230V / 50Hz / C16A</td>
</tr>
<tr>
<td>Power consumption NL / PL W</td>
<td>48 / 34</td>
</tr>
<tr>
<td>Boiler weight kg</td>
<td>350</td>
</tr>
<tr>
<td>Boiler capacity (water) I</td>
<td>70</td>
</tr>
<tr>
<td>Content ashcans heat exchanger / combustion chamber I</td>
<td>13 / 13</td>
</tr>
<tr>
<td>Water pressure drop (ΔT = 20 K / 10K) mbar</td>
<td>4,3 / 17,2</td>
</tr>
<tr>
<td>Min. boiler return temperature °C</td>
<td>Not applicable due to internal return temperature control</td>
</tr>
<tr>
<td>Max. permitted operating temperature °C</td>
<td>80</td>
</tr>
<tr>
<td>Min. operating temperature setting °C</td>
<td>40</td>
</tr>
<tr>
<td>Permitted operating pressure bar</td>
<td>3</td>
</tr>
<tr>
<td>Boiler class as per EN 303-5:2012</td>
<td>5</td>
</tr>
<tr>
<td>Airborne sound level dB(A)</td>
<td>< 70</td>
</tr>
<tr>
<td>Permitted fuel as per EN 14961 ¹</td>
<td>Part 2: Wood pellets class A1 / D06</td>
</tr>
</tbody>
</table>

Test data – Emissions in [mg/MJ] ¹ (nominal load / partial load)

<table>
<thead>
<tr>
<th>Test data</th>
<th>Test report data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Testing institute</td>
<td>TÜV Süd²</td>
</tr>
<tr>
<td>Test report no.</td>
<td>2211099-1</td>
</tr>
<tr>
<td>Date of issue</td>
<td>12.2.2011</td>
</tr>
<tr>
<td>Boiler efficiency NL / PL %</td>
<td>93,9 / 92,2</td>
</tr>
</tbody>
</table>

1. Detailed information on the fuel is included in the operating instructions, in the section on "Permitted fuels".

2. TÜV SÜD, Landesgesellschaft Österreich GmbH, Grazer Straße 16, A – 8600 Bruck an der Mur

3. As per ÖNORM / DIN EN 303-5, Section 5.1.3 type test: for a boiler from a range with a consistent structure it is sufficient, if the ratio of nominal heat output from the largest to the smallest boiler ≤ 2 : 1, to carry out the tests with the smallest and the largest boilers. The boiler manufacturer must ensure that all boilers, including those that have not been tested in the range, whose values have been determined depending on the nominal heat output by interpolation, fulfill the requirements of the norm.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Test data - Emissions in [mg/MJ] ¹ (nominal load / partial load)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td>mg/MJ</td>
</tr>
<tr>
<td>Nitrous oxide (NOx)</td>
<td>mg/MJ</td>
</tr>
<tr>
<td>Organic hydrocarbons (OGC)</td>
<td>mg/MJ</td>
</tr>
<tr>
<td>Dust</td>
<td>mg/MJ</td>
</tr>
</tbody>
</table>

1. The pollutant concentration is specified as a mass based on the energy content of the fuel fed to the combustion system in mg/MJ.
Test data – Emissions in [mg/m³] ¹) (nominal load / partial load)

<table>
<thead>
<tr>
<th>Emissions</th>
<th>12 / 23</th>
<th>22 / 48</th>
<th>110 / 89</th>
<th>121 / 107</th>
<th><1,0 / 1,0</th>
<th>1,0 / 1,7</th>
<th>12,7 / 2,0</th>
<th>17,8 / 7,1</th>
<th>16,9 / 12,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrous oxide (NOx)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic hydrocarbons (OGC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹) Emissions values based on dry flue gas at standard temperature and pressure (0°C, 1013 mbar) with a volume content of oxygen of 13%.

3.6.2 P4 Pellet 32 – 60

<table>
<thead>
<tr>
<th>Description</th>
<th>P4 Pellet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>32</td>
</tr>
<tr>
<td>Nominal heat output kW</td>
<td>32,0</td>
</tr>
<tr>
<td>Heat output range</td>
<td>9,6-32,0</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>230V / 50Hz / C16A</td>
</tr>
<tr>
<td>Power consumption NL/PL W</td>
<td>104 / 78</td>
</tr>
<tr>
<td>Boiler weight kg</td>
<td>530</td>
</tr>
<tr>
<td>Boiler capacity (water) I</td>
<td>125</td>
</tr>
<tr>
<td>Content ash containers heat exchanger / combustion chamber I</td>
<td>33 / 19</td>
</tr>
<tr>
<td>Water pressure drop mbar (ΔT = 20 K / 10K)</td>
<td>1,5 / 6,2</td>
</tr>
<tr>
<td>Min. boiler return temperature °C</td>
<td>Not applicable due to internal return temperature control</td>
</tr>
<tr>
<td>Max. permitted operating temperature</td>
<td>80</td>
</tr>
<tr>
<td>Min. operating temperature setting</td>
<td>40</td>
</tr>
<tr>
<td>Permitted operating pressure bar</td>
<td>3</td>
</tr>
<tr>
<td>Boiler class as per EN 303-5:2012</td>
<td>5</td>
</tr>
<tr>
<td>Airborne sound level dB(A)</td>
<td>< 70</td>
</tr>
<tr>
<td>Permitted fuel as per EN 14961 ¹)</td>
<td>Part 2: Wood pellets class A1 / D06</td>
</tr>
</tbody>
</table>
Test report data

<table>
<thead>
<tr>
<th>Description</th>
<th>32</th>
<th>38</th>
<th>45<sup>1)</sup></th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing institute</td>
<td>TÜV SÜD SZA<sup>3)</sup></td>
<td>TÜV Austria<sup>4)</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test report no.</td>
<td>K44302/6<sup>2)</sup></td>
<td>K44302/4<sup>5)</sup></td>
<td>13-U-584/SD, 10-UW/EX-242<sup>2)</sup></td>
<td>10-UW/EX-242/3<sup>3)</sup></td>
<td>08-UW/EX-337<sup>5)</sup></td>
</tr>
<tr>
<td>Boiler efficiency NL / PL</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93,5 / 95,7</td>
<td>92,6 / 95,7</td>
<td>92,4 / 94,5</td>
<td>92,4 / 92,3</td>
<td>92,1 / 92,3</td>
</tr>
</tbody>
</table>

1. P4 Pellet 45 is only available in UK
2. Detailed information on the fuel is included in the operating instructions, in the section on "Permitted fuels"
4. TÜV Austria Services GmbH, Geschäftsbereich Umweltschutz, Am Thalbach 15, A-4600 Thalheim-Wels
5. As per ÖNORM / DIN EN 303-5, Section 5.1.3 type test: for a boiler from a range with a consistent structure it is sufficient, if the ratio of nominal heat output from the largest to the smallest boiler ≤ 2 : 1, to carry out the tests with the smallest and the largest boilers. The boiler manufacturer must ensure that all boilers, including those that have not been tested in the range, whose values have been determined depending on the nominal heat output by interpolation, fulfill the requirements of the norm.

Test data – Emissions in [mg/MJ]¹⁾ (nominal load / partial load)

<table>
<thead>
<tr>
<th></th>
<th>31 / 61</th>
<th>45 / 61</th>
<th>31 / 44</th>
<th>25 / 11</th>
<th>5 / 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td>mg/MJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrous oxide (NOx)</td>
<td>mg/MJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic hydrocarbons (OGC)</td>
<td>mg/MJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust</td>
<td>mg/MJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The pollutant concentration is specified as a mass based on the energy content of the fuel fed to the combustion system in mg/MJ

Test data – Emissions in [mg/m³]¹⁾ (nominal load / partial load)

<table>
<thead>
<tr>
<th></th>
<th>48 / 95</th>
<th>70 / 95</th>
<th>46 / 68</th>
<th>39 / 17</th>
<th>7 / 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td>mg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrous oxide (NOx)</td>
<td>mg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic hydrocarbons (OGC)</td>
<td>mg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust</td>
<td>mg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Emissions values based on dry flue gas at standard temperature and pressure (0°C, 1013 mbar) with a volume content of oxygen of 13%

3.6.3 P4 Pellet 70 – 105

<table>
<thead>
<tr>
<th>Description</th>
<th>70<sup>1)</sup></th>
<th>80</th>
<th>100</th>
<th>100<sup>2)</sup></th>
<th>105<sup>3)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal heat output</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>69,0</td>
<td>80,0</td>
<td>100,0</td>
<td>99,0</td>
<td>105,0</td>
</tr>
<tr>
<td>Heat output range</td>
<td></td>
<td>20,7-69</td>
<td>24-80</td>
<td>30-100</td>
<td>29,7-99</td>
</tr>
<tr>
<td>Electrical connection</td>
<td></td>
<td>230V / 50Hz / C16A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption NL / PL</td>
<td>W</td>
<td>117 / 72</td>
<td>115 / 49</td>
<td>112 / 49</td>
<td>112 / 49</td>
</tr>
<tr>
<td>Boiler weight</td>
<td>kg</td>
<td>1090</td>
<td>1090</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>Boiler capacity (water)</td>
<td>l</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>Content ash containers</td>
<td></td>
<td>33 / 33</td>
<td>33 / 33</td>
<td>33 / 33</td>
<td>33 / 33</td>
</tr>
<tr>
<td>heat exchanger / combustion chamber</td>
<td></td>
<td>33 / 33</td>
<td>33 / 33</td>
<td>33 / 33</td>
<td>33 / 33</td>
</tr>
</tbody>
</table>
Technical specifications

#### Description	P4 Pellet
Water pressure drop ($\Delta T = 20$ K / 10K) | mbar | 5.0 / 12.8 | 4.8 / 14.3 | 4.3 / 14.3 | 4.3 / 14.3 | 4.3 / 14.3
Min. boiler return temperature | °C | Not applicable due to internal return temperature control
Max. permitted operating temperature | | 80
Min. operating temperature setting | | 40
Permitted operating pressure | bar | 3
Boiler class as per EN 303-5:2012 | | 5
Airborne sound level | dB(A) | < 70
Permitted fuel as per EN 14961 | Part 2: Wood pellets class A1 / D06

Test report data

<table>
<thead>
<tr>
<th>Description</th>
<th>Test report data</th>
</tr>
</thead>
</table>
| | 701 | 80 | 100 | 1002 | 1053
| Testing institute | TÜV Austria4
| Test report no. | 14-U-188/SD; 14-UW/Wels-EX-024 | 10-UW/Wels-EX242/45 | 10-UW/Wels-EX242/1 | 10-UW/Wels-EX242/55 | 10-UW/Wels-EX242/2
| Date of issue | 2.4.2014 | 27.11.2011 | 9.5.2011 | 14.3.2012 | 11.5.2011
| Boiler efficiency NL / PL | % | 92.7 / 92.7 | 93.2 / 93.7 | 94.3 / 93.7 | 94.3 / 93.7 | 94.3 / 93.7

1. P4 Pellet 70 is only available in France
2. P4 Pellet 100 (99kW) is only available in UK
3. P4 Pellet 105 is only available in Germany
4. Detailed information on the fuel is included in the operating instructions, in the section on “Permitted fuels”
5. TÜV Austria Services GmbH, Geschäftsbereich Umweltschutz, Am Thalbach 15, A-4600 Thalheim/Wels
6. As per ÖNORM / DIN EN 303-5, Section 5.1.3 type test: for a boiler from a range with a consistent structure it is sufficient, if the ratio of nominal heat output from the largest to the smallest boiler ≤ 2 : 1, to carry out the tests with the smallest and the largest boilers. The boiler manufacturer must ensure that all boilers, including those that have not been tested in the range, whose values have been determined depending on the nominal heat output by interpolation, fulfil the requirements of the norm.

Test data – Emissions in [mg/MJ] 1 (nominal load / partial load)

Description	701	80	100	1002	1053
Nitrous oxide (NOx)	mg/MJ	79 / 65	80 / 62	83 / 62	83 / 62
Organic hydrocarbons (OGC)	mg/MJ	<2 / <2	<2 / <1	<1 / <1	<1 / <1
Dust	mg/MJ	12 / 10	12 / 10	13 / 10	13 / 10

1. The pollutant concentration is specified as a mass based on the energy content of the fuel fed to the combustion system in mg/MJ

Test data – Emissions in [mg/m³] 1 (nominal load / partial load)

Description	701	80	100	1002	1053
Carbon monoxide (CO)	mg/m³	7 / 22	8 / 43	8 / 43	8 / 43
Nitrous oxide (NOx)	mg/m³	116 / 95	118 / 91	122 / 91	122 / 91
Organic hydrocarbons (OGC)	mg/m³	<2 / <3	<2 / <2	<1 / <2	<1 / <2
Dust	mg/m³	17 / 14	18 / 15	18 / 15	18 / 15

1. Emissions values based on dry flue gas at standard temperature and pressure (0°C, 1013 mbar) with a volume content of oxygen of 13%.
3.6.4 Airborne sound level

The sound levels specified in the following table are based on a sound measurement on a P4 Pellet 15. (measuring device: Omega HHSL 1)

The sound level of the individual units was plotted at a distance of 1 m from the sound source.

Ambient level for measurement: 32 dBA

<table>
<thead>
<tr>
<th>Unit</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units in continuous operation:</td>
<td></td>
</tr>
<tr>
<td>Induced draught fan (activation: 50%)</td>
<td>41 dBA</td>
</tr>
<tr>
<td>Induced draught fan (activation: 65%)</td>
<td>44 dBA</td>
</tr>
<tr>
<td>Induced draught fan (activation: 90%)</td>
<td>50 dBA</td>
</tr>
<tr>
<td>Units in non-continuous operation:</td>
<td></td>
</tr>
<tr>
<td>Suction turbine</td>
<td>68 dBA</td>
</tr>
<tr>
<td>Grate motor</td>
<td>42 dBA</td>
</tr>
<tr>
<td>Stoker motor / Stoker screw</td>
<td>33 dBA</td>
</tr>
<tr>
<td>Ignition fan</td>
<td>53 dBA</td>
</tr>
<tr>
<td>WOS motor / WOS system</td>
<td>60 dBA</td>
</tr>
<tr>
<td>Burn back slide valve actuator (open)</td>
<td>34 dBA</td>
</tr>
<tr>
<td>Burn back slide valve actuator (close)</td>
<td>50 dBA</td>
</tr>
</tbody>
</table>

Please note that all the measurements were taken in-house and do not come from a certified test centre. This data should, therefore, be viewed as individual guideline measurements.

Please also note the sound levels required in the standards listed below, which must be fulfilled by planning and construction measures:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖNORM B 8115-2</td>
<td>Sound insulation and room acoustics in building construction - Requirements for sound insulation</td>
</tr>
<tr>
<td>ÖNORM H 5190</td>
<td>Heating systems - Acoustic insulation</td>
</tr>
</tbody>
</table>
4 Assembly

4.1 Materials supplied

The boiler comes pre-assembled on a pallet in cardboard packaging.

<table>
<thead>
<tr>
<th></th>
<th>Pre-assembled boiler</th>
<th>Not pictured:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P4 Pellet 8-25:</td>
<td>In the suction cyclone container:</td>
</tr>
<tr>
<td></td>
<td>Transport covers of ashcans</td>
<td>• ID fan</td>
</tr>
<tr>
<td></td>
<td>P4 Pellet 32-105:</td>
<td>• Accessories package:</td>
</tr>
<tr>
<td></td>
<td>Insulated door(s) and ash container</td>
<td>adjusting spanner, heating circuit controller, DHW tank sensor boiler underlay, 2x hose clamps</td>
</tr>
<tr>
<td>3</td>
<td>Cleaning devices</td>
<td>Installation and operating instructions, guarantee certificate, identification plate</td>
</tr>
</tbody>
</table>

4.1.1 Tools required

The following tools are required for assembling the P4 Pellet:

- Socket set

4.2 Positioning

NOTICE

Damage to components if handled incorrectly

- Follow the transport instructions on the packaging
- Transport components with care to avoid damage
- Protect the packaging against damp conditions
- Pay attention to the pallet's centre of gravity when lifting

- Position a fork-lift or similar lifting device at the pallet and bring in the components
If the boiler cannot be brought in on the pallet:
- Remove the cardboard and remove the boiler from the pallet
 ⇒ See "Remove boiler from pallet" [page 26]

If you need to dismantle the boiler to bring it in:
- Dismantle the components of the boiler until it can be brought in
 ⇒ See "Dismantling for location where positioning is difficult" [page 29]

Positioning using a crane:

- Remove the insulating cover, heat exchanger cover and combustion chamber cover
- Correctly attach the crane hook to the attachment point for lifting eye bolt (underneath the cover) and position the boiler

4.3 Temporary storage

If the system is to be assembled at a later stage:
- Store components at a protected location, which is dry and free from dust
 ➔ Damp conditions and frost can damage components, particularly electric ones!
4.4 Setting up in the boiler room

4.4.1 Remove boiler from pallet

- Remove packing bands with suitable tools
- Lift off the cardboard
- Remove the transport covers (1) from the ashcan (P4 Pellet 8 – 25) / insulated door(s) and ash container (P4 Pellet 32 – 105) as well as the cleaning devices (2)
- Remove the protective casing

On the front of the boiler (P4 Pellet 8 - 25):
- Open the insulated door
- Remove securing devices used during transportation on the left and right side of the base
- Tilt the lock bolt for the door hinges forwards
- Lift the insulated door out of the hinges and remove
- Pull out floor insulation

On the front of the boiler (P4 Pellet 32 - 105):
- Remove securing devices used during transportation on the left and right side of the base
- Remove two screws each on the left and right of the ash collecting plate and remove the collecting plate
- Pull out the floor insulation behind
At the back of the boiler:

- Remove securing devices used during transportation on the left and right side of the base
- Lift boiler off pallet

TIP: Use Froling’s KHV 1400 boiler lifting system to help remove the pallet!

4.4.2 Moving the boiler in the boiler room

- Position a fork-lift or similar lifting device with a suitable load-bearing capacity at the base frame
- Lift and transport to the intended position in the installation room
 ➔ Observe the minimum distances in the boiler room.
4.4.3 Minimum distances in the boiler room

- The system should generally be set up so that it is accessible from all sides allowing quick and easy maintenance.
- Regional regulations regarding necessary maintenance areas for inspecting the chimney should be observed in addition to the specified minimum distances!
- Observe the applicable standards and regulations when setting up the system.
- Observe additional standards for noise protection (ÖNORM H 5190 - Noise protection measures)

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>8 - 15</th>
<th>20 - 25</th>
<th>32 - 38</th>
<th>45 - 60</th>
<th>70 - 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Minimum distance to stoker assembly</td>
<td>mm</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>B Induced draught fan maintenance area</td>
<td></td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>B* Space required incl. maintenance area for in-</td>
<td></td>
<td>600</td>
<td>600</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>duced draught fan with calorific value heat ex-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>changer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Space for insulated door</td>
<td></td>
<td>550</td>
<td>720</td>
<td>830</td>
<td>490</td>
<td>590</td>
</tr>
<tr>
<td>D Minimum distance to side of boiler</td>
<td></td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Space requirement with plug-in insulated door</td>
<td></td>
<td>400</td>
<td>400</td>
<td>300</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
4.5 Dismantling for location where positioning is difficult

If there is not enough room to bring in the pre-assembled boiler, certain components can be dismantled.

This section shows the maximum possible disassembly. Only dismantle the parts absolutely necessary to bring in the boiler.

4.5.1 Removing the stoker assembly and insulation

- Remove the locking screws on the sound insulation hood of the stoker assembly and remove the sound insulation hood
- Lift the front part of the stoker assembly up and remove

- Lift the back part of the stoker assembly up and remove
- Remove the insulating cover

- Remove the two screws and contact washers from the flaps of the controller cover
 ➔ Caution: Do not lose the contact washers!
- Open the insulated door (P4 Pellet 8/15/20/25)
Remove the screw and contact washer on the bottom of the controller cover
Remove the controller cover

4.5.2 Removing the door and ash drawer (P4 Pellet 8 - 25)

Tilt the lock bolt for the door hinges forwards
Lift the insulated door out of the hinges and remove

Open both ash doors and remove the ash drawer
Remove the heat exchanger cover and combustion chamber cover to further reduce the weight

4.5.3 Dismantling the suction cyclone cover

Remove the covering of the middle cable duct

At the pellet module:
Unplug the units:
- "Suction unit M3"
- "Max level S1"
- "Gate valve M8"

Undo the cable ties at the cable leadthrough
Pull out the cables of the unplugged units
4.5.4 Dismantling the stoker unit

- Wind up the unplugged cables on the units
- Open the clamps and take off the cover

4.5.4 Dismantling the stoker unit

- Remove the covering of the cable duct
 At the pellet module:
 - Unplug the units:
 - “Grate drive M6”
 - “Burn back flap M7”
 - “Stoker motor M1”
 - “Ignition E1”

- Pull out the cables of the unplugged units
- Undo the screw and remove the clamp on the ignition blower fan
- Remove the ignition fan

- Remove the spring cotter at the front and back of the grate drive and remove the bolts

 CAUTION: Secure the grate motor so that it does not fall!

- Push the sleeve on the grate rod back
- Remove the grate motor
Push the heat insulation mat aside slightly and remove two screws each from the right and left of the flange of the stoker unit.

You can remove the screws completely as the stoker unit is secured to the boiler with two hooks.

The following steps require two people.

NOTICE!

- Weight of stoker unit P4 Pellet 8 – 25: approx. 32kg
- Weight of stoker unit P4 Pellet 32 – 38: approx. 36 kg
- Weight of stoker unit P4 Pellet 45 – 60: approx. 46 kg
- Weight of stoker unit P4 Pellet 70 –105: approx. 68 kg

Pull the stoker unit up slightly until the hooks come out of the stoker flange.

Tip the unit back slightly and lift away.

The P4 is now fully dismantled and can be brought in.
4.5.5 Positioning dimensions after dismantling

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
<th>8 - 15</th>
<th>20 - 25</th>
<th>32 - 38</th>
<th>45 - 60</th>
<th>70 - 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Length, boiler</td>
<td>740</td>
<td>740</td>
<td>740</td>
<td>820<sup>1)</sup></td>
<td>910<sup>2)</sup></td>
</tr>
<tr>
<td>B</td>
<td>Width, boiler</td>
<td>705</td>
<td>875</td>
<td>965</td>
<td>1275</td>
<td>1480</td>
</tr>
<tr>
<td>H</td>
<td>Height, boiler</td>
<td>1280</td>
<td>1280</td>
<td>1430</td>
<td>1585</td>
<td>1710</td>
</tr>
</tbody>
</table>

1. You can reduce the size to 780 mm by removing the control (e.g. to fit through a door with a clearance of 800 mm)
2. You can reduce the size to 880 mm by removing the control (e.g. to fit through a door with a clearance of 900 mm)

Removing the control

- Remove the left and right end caps
- Secure the bottom nuts to the bracket of the control
- Remove the screws on the right and left of the control
- Unplug the cable marked “Display” and pull up out of the controller
- Remove the control
4.5.6 Notes for reassembly

- After positioning, reassemble the boiler in the reverse order

It is particularly important to carry out the following steps during assembly:

Assembling the grate motor:

P4 Pellet 8-38:
- Correct position at back support:
 - P4 Pellet 8 – 15: top position
 - P4 Pellet 20 - 38: bottom position

- Check that the housing is in the right position at the grate rod (see figure)

Ignition fan

- Fit the clamp to the igniter tube using screws
 - Fix the cable with the cable ties supplied.
 - There must not be any loose cables in the area of the igniter.
 - Only connect the power supply after completing assembly.

NOTICE! The individual units should be checked by a qualified technician and adjusted if necessary during initial start-up.
4.6 Assembling the pellet boiler

4.6.1 Before Installation

Checking the seal of the ash doors

☐ Open the door

☐ Insert a sheet of paper at the top between the door and boiler
☐ Close the door
☐ Try to pull the sheet of paper out
 ➤ If the paper cannot be removed:
 The door seal is OK and the settings are correct
 ➤ If the paper can be removed:
 The door is not sealed properly and must be adjusted!

☐ Check the seal again after positioning the doors

☐ Repeat the procedure at the bottom of the ash door and on the side of the door handle above and below the door handle as well as at the same positions on the other ash door

Adjusting the doors

P4 Pellet 8 – 25:

☐ Using an Allen key (13 mm), loosen the lock nuts on the locking cams at the top and bottom
☐ Close the door
 ➤ With a gap of approx. 2 to 3 cm there should be a noticeable resistance
If the resistance is too low or too high, move the locking cams backwards or forwards using an Allen key (32 mm)

- The movement of the locking cams causes the hinged plate to move, allowing the contact pressure to be adjusted
- Caution: The two locking cams (top and bottom) must be aligned

Close the door

If the door will not close, move the locking cams forward slightly

- Caution: The two locking cams (top and bottom) must be aligned

Secure the lock nuts again

The locking plate can be moved in the same way using the locking cam at the side of the door handle, allowing the contact pressure to be adjusted on this side

P4 Pellet 32 – 105:

On the side with the door stop:
- Adjust the doors with the locking cam as explained above

On the side with the door handle:

- Loosen the lock nuts at the top and bottom of the locking plate using an Allen key (13 mm)
- Close the door
 - With a gap of approx. 2 to 3 cm there should be a noticeable resistance
If the resistance is too low or too high, move the locking plate backwards or forwards using appropriate tools (e.g. screwdriver and hammer)

- Caution: The locking plate must be aligned at the top and bottom.

Close the door

If the door will not close, move the locking plate forward slightly

- Caution: The locking plate must be aligned at the top and bottom.

Secure the lock nuts again
4.6.2 Fitting the induced draught fan

- Remove the locking screws on the sound insulation hood of the stoker assembly and remove the sound insulation hood
- Open the clamps on the suction cyclone container and remove the cover
- Remove the cardboard containing the induced draught fan and accessories package from the suction cyclone container

- Remove the pre-assembled induced draught cover plates
- Remove the pre-assembled nuts and spacer washers for induced draught
- Attach and fit the ID fan as illustrated

- Join the two cables of the ID fan with the pre-installed cables
 - The locking device (1) must click into place.
 - Push the cable behind the cladding and replace the induced draught cover plates.
4.6.3 Fitting the ash container and doors (P4 Pellet 32 - 105)

- Remove the insulating cover
- Remove the two screws and contact washers from the flaps of the controller cover
 ➔ Caution: Do not lose the contact washers!
- Remove the screw and contact washer on the bottom of the controller cover
- Remove the controller cover
- Hang the insulated door to the boiler base and secure with lock bolt
Take the two covers for the ash containers out of the ash containers, position and secure with clamps.

Put the left and right ash containers onto the ash screws and secure with lever.

Replace the controller cover after connecting to the power supply.

4.7 Connecting the discharge system

Fit the discharge system according to the installation instructions enclosed.

Connect the suction hose and return air line at the back of the boiler:

➥ Left port (1) = suction hose (Pellets sticker)
➥ Right port (2) = return air line

NOTICE! Ensure the potential equalisation matches the discharge system assembly instructions when connecting the lines!
4.8 Power connection

DANGER

When working on electrical components:

Risk of electrocution!

When work is carried out on electrical components:

- Only have work carried out by a qualified electrician
- Observe the applicable standards and regulations
 - Work must not be carried out on electrical components by unauthorised persons

- Flexible sheathed cable must be used for the wiring; this must be of the correct size to comply with applicable regional standards and regulations.
- The power supply line (mains connection) must be fitted with a C16A fuse by the customer.

- Remove the insulating cover
- Remove the two screws and contact washers from the flaps of the controller cover
 - Caution: Do not lose the contact washers!
- Open the insulated door (P4 Pellet 8/15/20/25)

- Remove the screw and contact washer on the bottom of the controller cover
- Remove the controller cover
Wire the connections in accordance with the circuit diagram

For circuit diagrams see operating instructions for "Lambdatronic P 3200"

To reassemble the controller cover and insulating cover, perform the disassembly steps in the reverse order

4.8.1 Information on circulating pumps

NOTICE

According to 2012/622/EU external, wet running circulating pumps must comply with the following limit values of the Energy Efficiency Index (EEI):

- Effective from 01/01/2013: Wet running circulating pumps with EEI ≤ 0.27
- Effective from 08/01/2015: Wet running circulating pumps with EEI ≤ 0.23

Only high efficiency pumps with a connection option for a control signal (PDM / 0-10V) should be connected to speed-controlled pump outputs (pump 1 on the core module and pump outputs on the hydraulic module). In this case, the control line is connected to the corresponding PDM outputs of the boards. Observe the connection instructions in the boiler controller documentation!

CAUTION

When using high efficiency pumps without an additional control line at speed-controlled pump outputs:

Malfunctions of the boiler, the pump and the hydraulic system may occur!

Therefore:

- Do not connect EC motor pumps without a control line to the speed-controlled pump outputs of the boards.
 - Only use special high efficiency pumps with a connection option for a control line (PDM/0-10V)!
 - Observe the additional instructions and information on board outputs in the operation instructions for the boiler controller.
4.8.2 Comfort pellet box port

With the automatic universal suction system, the Comfort pellet box is connected to the core module using flexible cable (5x0.75mm², YMM as per ÖVE-K41-5 or H05VV-F as per DIN VDE 0881-5). This is a 24V control line.

The previous figure shows the plugged-in 5-pin connecting plug of the Comfort pellet box and the accompanying connection layout at the LambdaTronic P 3200 controller.

To check the plug configuration:

☐ Perform check using the board's labels
 ➤ The actuators (1) of the pellet box must be switched to the "R" position.

The actuators are ready to plug in and are connected to the board. The pellet box comes with all the necessary plug clips.
5 Start-up

5.1 Before commissioning / configuring the boiler

The boiler must be adjusted to the heating system during commissioning.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum efficiency and efficient, low-emission operation can only be guaranteed if the system is set up by trained professionals and the standard factory settings are observed.</td>
</tr>
<tr>
<td>Take the following precautions:</td>
</tr>
<tr>
<td>☑ Initial startup should be carried out with an authorised installer or with Froling customer services</td>
</tr>
</tbody>
</table>

- ☑ Adjust the boiler controller to the system type
- ☑ Apply boiler standard values

NOTICE! The keypad assignment and the steps necessary to modify the parameters are detailed in the operating instructions for the boiler control unit.

- ☑ Check the system pressure of the heating system
- ☑ Check that the heating system is completely vented
- ☑ Check that the safety devices are present and working correctly
- ☑ Check that there is sufficient ventilation in the boiler room
- ☑ Check the seal of the boiler
 - ➪ All doors and inspection openings must be tightly sealed!

- ☑ Check that drives and actuators are working and turning in the right direction

NOTICE! For how to check the analogue and digital outputs, see the operating instructions for the boiler controller

- ☑ Check that the door contact switch is working correctly

NOTICE! For how to check the digital inputs see the operating instructions for the boiler controller.
5.1.1 Setting the "Max level and Min level" sensor

In delivery configuration, the factory settings of the sensor are secured with a seal. Changes to the settings should only be carried out by qualified technicians.

The monitoring LED should only light up when materials are detected.

- If the monitoring LED stays on permanently, the sensitivity is set too high
 ➥ Reduce the sensitivity by turning the adjusting screw to the left
- If the monitoring LED does not react when pellets are being fed in, the sensitivity is set too low.
 ➥ Increase the sensitivity of the adjusting screw by turning to the right

5.2 Initial startup

5.2.1 Permitted fuels

Wood pellets

Wood pellets made from natural wood with a diameter of 6 mm

<table>
<thead>
<tr>
<th>Note on standards</th>
<th>EU:</th>
<th>Fuel acc. to EN 14961 - Part 2: Wood pellets class A1 / D06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>and/or:</td>
<td>Certification program ENplus or DINplus</td>
</tr>
</tbody>
</table>

General note:

Before refilling the store, check for pellet dust and clean if necessary.

5.2.2 Non-permitted fuels

The use of fuels not defined in the "Permitted fuels" section, and particularly the burning of refuse, is not permitted.

⚠️ CAUTION

In case of use of non-permitted fuels:

Burning non-permitted fuels increases the cleaning requirements and leads to a build-up of aggressive sedimentation and condensation, which can damage the boiler and also invalidates the guarantee. Using non-standard fuels can also lead to serious problems with combustion.

For this reason, when operating the boiler:

- Only use permitted fuels
5.2.3 Heating up for the first time

NOTICE

If condensation escapes during the initial heat-up phase, this does not indicate a fault.

☐ Tip: If this occurs, clean up using a cleaning rag.

NOTICE! See boiler controller operating instructions for all the steps necessary to start up for the first time Lambdatronic P 3200
6 Decommissioning

6.1 Mothballing

The following measures should be taken if the boiler is to remain out of service for several weeks (e.g. during the summer):

- Clean the boiler thoroughly and close the doors fully

If the boiler is to remain out of service during the winter:

- Have the system completely drained by a qualified technician
 ➔ Protection against frost

6.2 Disassembly

To disassemble the system, follow the steps for assembly in reverse order.

6.3 Disposal

- Ensure that they are disposed of in an environmentally friendly way in accordance with waste management regulations.
- You can separate and clean recyclable materials and send them to a recycling centre.
7 Appendix

7.1 Addresses

7.1.1 Address of manufacturer

FRÖLING
Heizkessel- und Behälterbau GesmbH

Industriestraße 12
A-4710 Grieskirchen
AUSTRIA

TEL 0043 (0)7248 606 0
FAX 0043 (0)7248 606 600
INTERNET www.froeling.com

7.1.2 Address of the installer

Stamp